Abstract

NbC–SiC micro/nanowires (MNWs) with NbC content varying from 5 to 20 mol.-% were synthesised at 1600–1800°C via carbothermal reduction utilising silica sol, niobium pentoxide powder and carbon black as starting materials. The synthesis process and growth mechanism of NbC–SiC system were investigated. Results show that the morphology of the synthesised products mainly appears as curve shaped microwires or nanowires. The crystalline consists of both SiC and NbC phases which doped with each other by substitution and interstitial reactions in solid solution. NbC–SiC MNWs were developed by vapour–liquid–solid mechanism according to the existence of liquid droplet phase in the tip at reaction temperature. β-SiC twin crystal growing along [112] direction was formed in the stem, and NbC polycrystal was dissociated from Nb–Si liquid phase. The varied concentration of Nb and Si in the Nb–Si liquid phase could be a significant reason for the curved growth of NbC–SiC MNWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.