Abstract

Uncontrolled proliferation is a fundamental characteristic of cancer, and consequently, imaging of tumor proliferative status finds interest clinically both as a diagnostic tool and for evaluation of response to treatment. Positron emission tomography (PET) radiotracers based on a nucleoside core, such as 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), have been extensively studied for this purpose. However, [18F]FLT suffers from poor DNA incorporation leading to occasional poor correlation of [18F]FLT tumor uptake with other proliferation indicators such as Ki-67 immunostaining. N3-((1-(2-[18F]fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)thymidine ([18F]2) and N3-((1-(2-[18F]fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-4'-thio-β-thymidine ([18F]3) were synthesized by click chemistry from [18F]fluoroethyl azide and by direct nucleophilic substitution of a tosylate precursor. Metabolic stability and phosphorylation potential of the radiotracers were evaluated in vitro and compared to [18F]FLT. Further, metabolic stability and biodistribution analysis of [18F]2 and [18F]3 were evaluated in vivo. Stable isotope standards and radiochemistry precursors were synthesized by modification of existing literature procedures. [18F]2 and [18F]3 were synthesized in a radiochemical yield of 8%-12% (end of synthesis, non-decay corrected). Both nucleosides were stable to metabolic degradation by thymidine phosphorylase, and in vivo stability analysis showed only one metabolite for [18F]3. No phosphorylation of [18F]2 could be detected in HCT116 cell homogenates, and in the same assay, only minor (∼8%) phosphorylation of [18F]3 was observed. Biodistribution in Balb/c mice indicated rapid clearance for [18F]2 and [18F]3 to a lesser extent. The favorable biodistribution and metabolic profile of [18F]3 warrant further investigation as a next-generation PET proliferation marker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.