Abstract

Prostate-specific membrane antigen (PSMA) is a well-validated prostate cancer marker but reported PSMA-targeted tracers derived from the Lys-urea-Glu pharmacophore including the clinically validated [99mTc]Tc-EDDA/HYNIC-iPSMA have high off-target uptake in kidneys, spleen, and salivary glands. In this study, we synthesized and evaluated three novel 99mTc-labeled PSMA-targeted tracers and investigated if the tracers derived from the Lys-urea-Aad pharmacophore could have minimized uptake in off-target organs/tissues. In vitro competition binding assays showed that compared with HYNIC-iPSMA, the three novel ligands had slightly weaker PSMA binding affinity (average Ki = 3.11 vs. 8.96-11.6 nM). Imaging and ex vivo biodistribution studies in LNCaP tumor-bearing mice showed that [99mTc]Tc-EDDA/HYNIC-iPSMA and the three novel tracers successfully visualized LNCaP tumor xenografts in SPECT images and were excreted mainly via the renal pathway. The average tumor uptake at 1 h post-injection varied from 5.40 to 18.8%ID/g, and the tracers derived from the Lys-urea-Aad pharmacophore had much lower uptake in the spleen and salivary glands. Compared with the clinical tracer [99mTc]Tc-EDDA/HYNIC-iPSMA, the Lys-urea-Aad-derived [99mTc]Tc-EDDA-KL01127 had lower background uptake and superior tumor-to-background contrast ratios and is therefore promising for clinical translation to detect prostate cancer lesions with SPECT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.