Abstract

A α-Fe2O3@carbon aerogel (CA) composite material has been successfully synthesized via a simple hydrothermal method in water solution. The microstructure, morphologies, α-Fe2O3 loading content in α-Fe2O3@CA, porous nanostructure and electrochemical properties of these materials are investigated by X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, N2 adsorption-desorption isotherms, constant current charge/discharge tests and cyclic voltammetry tests. The results show that α-Fe2O3 is uniformly dispersed on CA with a rugby-like morphology, and the α-Fe2O3 active material loading content in α-Fe2O3@CA composite is up to 95.72%. The α-Fe2O3@CA revealed a high reversible capacity of 581.9mAhg−1 and stable cyclic retention at 50th cycle. The improvement of reversible capacity and cyclic performance of the α-Fe2O3@CA composite is attributed to the unique structure of CA, with high electronic conductivity and three-dimensional porous structures among the interconnected α-Fe2O3@CA composite, which could not only effectively load the α-Fe2O3 active material, but also could prevent the aggregation of α-Fe2O3 nanoparticles and facilitate the transport of electrons and shorten the distance for Li+ diffusion. The encouraging experimental results suggest that the novel α-Fe2O3@CA composite have great potential for use as an anode material for lithium rechargeable cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.