Abstract

Utilizing the copolymerization modification of dimethyl diallyl ammonium chloride (DMDAAC), the high positive charge density of the copolymer could be maintained, thereby facilitating the deficiency of its monomer in the application. In this paper, poly (DMDAAC-co-DAMBAC) (9:1) was synthesized with an aqueous polymerization method using DMDAAC and methyl benzyl diallyl ammonium chloride (DAMBAC) as monomers and 2,2'-azobis [2-methylpropionamidine] dihydrochloride (V50) as an initiator. Targeted to the product's weight-average relative molecular mass (Mw), the response surface methodology (RSM) was used to optimize the preparation process. The optimal process conditions were obtained as follows: w (M) = 80.0%, m (V50):m (M) = 0.00700%, m (Na4EDTA):m (M) = 0.00350%, T1 = 50.0 °C, T2 = 60.0 °C, and T3 = 72.5 °C. The intrinsic viscosity ([η]) of the product was 1.780 dL/g, and the corresponding double bond conversion (Conv.) was 90.25 %. Poly (DMDAAC-co-DAMBAC) (9:1) revealed a highest Mw of 5.637 × 105, together with the polydispersity index d (Mw/Mn) as 1.464. For the demulsification performance of simulated crude oil O/W emulsions, the demulsification rate of poly (DMDAAC-co-DAMBAC) (9:1) could reach 97.73%. Our study has illustrated that the copolymerization of DMDAAC and a small amount of DAMBAC with poor reactivity could significantly improve the relative molecular weight of the polymer, enhance its lipophilicity, and thus the application scope of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.