Abstract

Of the many methods of laser treatment for improving materials surface properties that have been reported, very few have addressed laser-assisted chemical reaction. In this work laser deposition of metal-matrix composites is reported, using chromium oxide and silicon carbide powders mixed in silica sol–gel mixtures, on EN43 mild steel substrates. Very fine SiC particles ≤ 1 μm and M 7C 3 carbides were synthesised in situ and dispersed in ferrite matrix by this process. A diode laser at different powers and scanning speeds was applied to specimens coated with slurries of different chemical compositions. The effect of solution composition and bath depths were examined in order to achieve optimum experimental parameters. Surface morphology and microstructure of the deposited coatings and substrate surface layers were examined using optical microscopy, scanning electron microscopy (SEM) and field emission gun scanning electron microscope (FEG-SEM). Chemical composition was determined by energy dispersive X-ray analysis (EDX). The different phases were identified by X-ray diffraction (XRD). Results of microhardness measurements and wear properties of the coatings are also reported. Thermodynamic analysis of the reactions taking place is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.