Abstract

Orthorhombic niobium pentoxide (T-Nb2O5) offers high capacitance and fast charging–discharging rate capabilities when used as an electrode material for Li-ion capacitors. A homogeneous distribution of T-Nb2O5 nanoparticles in a highly conductive matrix represents a promising approach to maximize its energy and power densities. Here we report a one-step CO2 oxidation of two-dimensional (2D) Nb2CTx, a member of the MXenes family of 2D transition metal carbides, which leads to a hierarchical hybrid material with T-Nb2O5 nanoparticles uniformly supported on the surface of Nb2CTx sheets with disordered carbon. The oxidation temperature, duration, and CO2 flow rate determine the T-Nb2O5 crystallite size as well as the structure, composition, and the charge storage properties of the hybrid material. Fifty micrometer thick electrodes of the hybrid material exhibit high capacitance (330 C g–1 and 660 mF cm–2 at a charge–discharge time of 4 min) and good cycling performance in a nonaqueous lithium electrolyte. The ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.