Abstract

In this work, a Pd/C catalyst with high activity as well as excellent stability has been prepared by hydrogen gas reduction of Pd(II) precursor in ethylene glycol solution with the assistance of appropriate amount of sodium citrate. Pd nanoparticles with an average particle size of 3.8 nm and excellent uniformity are obtained. The Pd/C catalyst synthesized in this work shows an electrochemical surface area of 68.6 m2 g−1 and displays activities of 819 A g−1. Strikingly, the Pd/C catalyst also exhibits excellent stability, which has been confirmed by its slow activity decay under repeated potential cycles as well as chronoamperometric test. The activity for Pd/C at the 300th and 500th cycle remains at 5.5 and 2.4 mA cm−2, respectively, which is 25% and 11% of its initial value, respectively. The oxidation currents at the Pd/C and Pd/C-Citrate (control) at 0 V decrease to 44% and 25% of their initial values. Transmission electron microscopy observations on the Pd/C catalyst after 1000 potential cycles reveal that, in addition to carbon support corrosion, Pd agglomeration together with more serious Pd dissolution occur at the same time, leading to a decrease of the electrocatalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.