Abstract

Fluorescence imaging technique has been used for imaging of biological cells and tissues invivo. The Cd-free luminescent quantum dots conjugating with a cancer targeting ligand has been taken as a promising biocompatibility and low cytotoxicity system for targeted cancer imaging. This work reports the synthesis of fluorescent-doped core/shell quantum dots of water-soluble manganese-doped zinc sulfide. Quantum dots of manganese-doped zinc sulfide were prepared by nucleation doping strategy, with 3-mercaptopropionic acid as stabilizer at 90 in aqueous solution. The manganese-doped zinc sulfide nanoparticles exhibit strong orange fluorescence under UV irradiation, resistance to photo-bleaching, and low-cytotoxicity to HeLa cells. The structure and optical properties of nanoparticles were characterized by scanning electron microscope, X-ray diffraction, dynamic light scattering, and photoluminescence emission spectroscopy. Manganese-doped zinc sulfide nanoparticles conjugated with folic acid using 2,2'-(ethylenedioxy)-bis-(ethylamine) as the linker. The covalent binding of both 2,2'-(ethylenedioxy)-bis-(ethylamine) and folic acid on the surface of manganese-doped zinc sulfide nanoparticles probed by Fourier transform infrared spectroscopy detection. Furthermore, invitro cytotoxicity assessment of manganese-doped zinc sulfide-folic acid probes use HeLa cells. The obtained fluorescent probes (manganese-doped zinc sulfide) were used for tumor targeting and imaging invivo. The manganese-doped zinc sulfide-folic acid fluorescent probes which targeting the tumor cells in the body of nude mouse tumor model would emit orange fluorescence, when exposed to a 365 nm lamp. We investigate the biodistribution of the manganese-doped zinc sulfide-folic acid fluorescent probes in tumor mouse model by measuring zinc concentration in tissues. These studies demonstrate the practicality of manganese-doped zinc sulfide-folic acid fluorescent probes as promising platform for tumor targeting and imaging invivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.