Abstract

Bio-inspired semiconductor-based devices with adaptive and dynamic properties will have many advantages over conventional static digital silicon-based technologies. The ability to compute, process, and retain information in parallel, without referencing other circuit elements, offers enhanced speed, storage density, energy efficiency, and functionality benefits. A novel crossbar microwire-based device consisting of Nb/NbO/Pt structure that exhibits neural synapse-like adaptive conductivity (i.e., synaptic plasticity) is presented. The neuromorphic memristive junction, formed at the interface between the Pt metal wire and the thermally annealed core-shell Nb–NbO wire, demonstrates 1000 times conductivity change with an effective continuum of resistance levels. The device can also be fully activated to display standard resistance switching between two states. In the subthreshold regime, the voltage flux applied through the ~400 nm thick NbO junction is shown to have a linear relationship to the charge produced within the device. The conductance value G is a function of the total flux history applied. This has implications in emerging neuromorphic semiconductor hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.