Abstract

A new kind of ultraviolet (UV)-curable waterborne polyurethane–acrylate (PUA) ionomer, prepared from toluene diisocyanate (TDI), polyethylene glycol (PEG), dimethylolpropionic acid (DMPA), triethylamine (TEA), and 2-hydroxyethyl methacrylate (HEMA), was synthesized by the modified prepolymer mixing process in which water serves as a chain-extender and dispersant. Fourier transform infrared (FTIR) spectra demonstrated the formation of the PUA ionomers both in dispersions and in their corresponding cured films. Surface tension of the PUA dispersions decreased as the DMPA-to-PEG mole ratio increased. The investigation of rheological behavior of the PUA dispersions suggested that all the dispersions belong to pseudoplastic fluid and display the characteristic of common polymer dispersions. Differential scanning calorimetry (DSC) analysis showed that the increasing DMPA-to-PEG mole ratio may result in a higher Tg and a broader transition zone for the hard segment. The results of TGA for the PUA-cured films indicated good thermal stability with no appreciable weight loss until well above 200°C. Measurement of physical properties showed that all the PUA-cured films exhibited excellent adhesion, gloss, flexibility, and impact strength, as well as pendulum hardness, depending upon hard segment content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2869–2876, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.