Abstract

In this communication we describe the design and synthesis of four new conjugated polymers (P1–P4) based on 3,4-ditetradecyloxythiophene. The required diamine monomer was prepared by a unique catalyst-free reduction process using hydrazine hydrate. The structures of the intermediates and polymers were established by FTIR, 1H NMR spectroscopy. Molecular weights of polymers were determined by gel permeation chromatographic (GPC) method. Their electrochemical properties were investigated by cyclic voltammetry and linear optical properties were determined by UV–Visible absorption and fluorescence emission spectroscopic techniques. Further, their nonlinear optical properties were evaluated by Z-scan technique using Nd:YAG laser. These polymers showed strong optical limiting behavior with two-photon absorption (2PA) coefficients of the order of 10−10 m/W, which are comparable to that of good optical limiting materials reported in the literature. Also, it has been observed that the optical nonlinearity enhanced with the increase in donor–acceptor strength of the polymer backbone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.