Abstract

AbstractTb-doped AlBNO (AlBNO:Tb) films with various composition ratios are investigated for luminescence layers of inorganic electroluminescence(EL) devices. Luminescence layers with a wide bandgap and a low dielectric constant are required to realize high performance of EL devices. The ultraviolet-visible radiation absorption measurement and capacitance-voltage (C-V) measurement show that the AlBNO:Tb films have wider bandgap and lower dielectric constant than ZnS which is put to practical use as the host material of the luminescence layer. Photoluminescence (PL) measurement indicates that PL intensity increases with increasing B composition ratio in the range of 5 % - 10 %. Moreover, the suppression factor of the PL intensity can be understood through the annealing experiment. The PL intensity of the film with 800 °C annealing is about 10 times larger than that of the film without annealing. X-ray photoelectron spectroscopy (XPS) measurement suggests that Tb4+ ions decrease compared with Tb3+ ions after annealing treatment. O atoms in the AlBNO:Tb film are dissociated from Tb and bonded to B atoms by annealing treatment. This suggests that decrease of Tb4+ ions is related to increase of the PL intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.