Abstract
Photocatalyst immobilization on support materials is essential for large-scale applications. Here, we describe growth of a p-n junction catalyst (NiO/TiO2) on a stainless-steel mesh (SSM) support using a facile hydrothermal method. The morphological superiority of the composite over previously reported NiO/TiO2 catalysts was probed using scanning and transmission electron microscopy. Flower petal–like NiO grew uniformly on SSM, which was evenly covered by TiO2 nanoparticles. Theoretical and experimental X-ray diffraction patterns were compared to analyze the development of the composite during various stages of synthesis. The photocatalytic activity of a powdered catalyst and SSM@catalyst was compared by measuring bisphenol A (BPA) degradation. SSM@NiO/TiO2 achieved the highest rate of BPA degradation, removing 96% of the BPA in 120 min. Scavenging experiments were used to investigate the charge separation and degradation mechanism. SSM@NiO/TiO2 showed excellent reusability potential, achieving and sustaining 91% BPA removal after 10 rounds of cyclic degradation. Reusability performance, composite resilience, apparent quantum yields, and figures of merit suggest that SSM@NiO/TiO2 has excellent utility for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.