Abstract
AbstractPoly(vinyl amine) (PVAm)‐based amphiphilic glycopolymers were synthesized by a two‐step method, that is dextran molecules (Dex, Mw = 1500) were attached to the PVAm backbone by reacting amine groups with dextran lactone, and then, hexanoyl groups (Hex) were attached by reacting the PVAm free amine groups with N‐(hexanoyloxy)succinimide. By adjustment of the feed ratios of Dex/Hex, amphiphilic comb‐like glycopolymers with various hydrophilic and hydrophobic balances were prepared, and their structures were characterized by 1H NMR. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)‐coated coverslips by water contact angle measurements. The results show that the amphiphilic glycopolymers need about 20 mol % of dextran attachment to make an effective hydrophilic coating. In comparison with the one‐step reaction by addition of dextran lactone and alkyl succinimide simultaneously, the two‐step approach can attach Dex on PVAm as high as possible in the first step, and offers quantitative advantages in controlling the ratio of hydrophilic and hydrophobic chains along the PVAm backbone, resulting in increased water solubility for the final amphiphilic glycopolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 192–199, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.