Abstract

In this work, phenol/formaldehyde nanocomposites were synthesized using reactive rubber nanoparticles (RRNP) and cloisite30B nanoclay with different percentages and were fully investigated. A little amount of these nanomaterials enhanced the mechanical properties of the produced composites. This enhancement is attributed to the interaction of these nanomaterials with the bakelite matrix. In bakelite/RRNP, the mechanical properties enhancement is due to the chemical connection of RRNP to the bakelite matrix while in bakelite/Cloisite30B, this enhancement is due to polar/polar interaction. It was observed that the composites exhibited an intercalated disordered structure by means of Xray diffraction (XRD) and transmission electronic microscopy. The crosslinking density of the bakelite network was greatly influenced by the presence and type of nanomaterial that was added to the resin. The thermal stability was investigated with TGA/DSC which proved that these nanocomposite are (10–20)% more thermally stable than neat Bakelite resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.