Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, was electrochemically synthesized with p-toluenesulfonate (TSNa) as a dopant on gold surface. The electrochemical properties of the polymer were studied by impedance spectroscopy and cyclic voltammetry (CV). It was found that the impedance magnitude of the electrode significantly decreased over a wide range of frequency from 10 0 to 10 4 Hz after the polymer deposition. The CV demonstrated enhanced reversibility of the PEDOT film. The surface morphology was investigated by scanning electronic microscope (SEM) and atomic force microscope (AFM). Due to the effect of TSNa structure, nano-fungus was observed. Polymerization time was optimized and 30 min deposition resulted in the highest charge capacity, showing the highest electroactive surface area, possibly due to its porous structured polymer. Moreover, the high specific surface area could be favorable for cell attachment. The stability of PEDOT in glutathione (GSH), a common biologically relevant reducing agent, was studied with polypyrrole (PPy) as a baseline. It showed that the former had much better stability than the latter and it could be an excellent candidate for potential applications of in vivo neural devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.