Abstract
We report the synthesis and characterization of pure CuO and CuO-ZnO nanostructured composite thin films sprayed on particle-free glass substrates using chemical spray pyrolysis method. The films were systematically analyzed through microstructural, morphological, chemical, and gas-sensing studies. X-ray diffraction (XRD) studies confirmed the polycrystalline nature of the films, with a predominant monoclinic phase along the (002) direction. Key structural parameters, such as crystallite size, dislocation density, strain, and the number of crystallites per unit area, were reported from XRD analysis. Field emission scanning electron microscopy (FESEM) revealed a bundled-like morphology with uniform particle distribution, enhancing the surface area for effective gas interaction. X-ray photoelectron spectroscopy (XPS) results indicated that Cu and Zn ions existed predominantly in the 2+ oxidation state, contributing to the films' reactivity. Significantly, the gas sensing studies were investigated with static liquid distribution method, highlighting the remarkable performance of the 30 wt.% CuO-ZnO composite thin film. This composite exhibited a substantial response to 5 ppm formaldehyde at ambient conditions, showing a recovery time of 22 seconds and a response time of 15 seconds. These findings underscore the potential of CuO-ZnO composites for efficient formaldehyde gas sensing applications, marking a notable advancement in the field of environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of physics. Condensed matter : an Institute of Physics journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.