Abstract
As diols, N,N'-1,2-ethanediylbis-(4-hydroxy-pentanamide) (1) and 4-hydroxy-N-(2-hydroxyethyl)-pentanamide (2)) are versatile precursors for the manufacture of bio-polymers. Polymer design, by exploiting the variation in structure of both diol and di-isocyanate monomers, such as backbone structure and presence of functional groups, appears to be a promising biopolymer engineering pathway to synthesize polyurethanes. Both diols (1) and (2) were then polymerized by reaction with aliphatic and aromatic di-isocyanates at 140 °C in (N,N-dimethylacetamide (DMA) solvents using triethylamine (TEA) catalysts, to obtain novel polyurethanes. The products were characterized by FTIR, 1H-NMR, 13C-NMR, and Elemental Analysis. This working has created a new chance to synthesis bio-polyurethanes based on levulinic acid, as one of biomass compounds
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.