Abstract

A novel series of polymeric ionic liquids (ILs) based on benzimidazolium chloride derivatives, namely, 1,3-diheptyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL1), 1,3-dioctyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL2), and 1,3-Bis-decyl-2-(2-phenyl-propyl)-3H-benzoimidazol-1-ium chloride (IL3), were synthesized and chemically elucidated by Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and elemental analysis. Their influence as corrosion suppressors were investigated for C-steel corrosion in 1 M HCl, by weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) methods, revealing that their exclusive addition decreased corrosion with mounting concentrations. These assays demonstrated that novel ILs are efficient inhibitors at relatively low dosages. The efficacy of the synthesized ILs reached 79.7, 92.2 and 96.9%, respectively, at 250 ppm and 303 K. Parameters for activation and adsorption were calculated and are discussed. The Tafel polarization results demonstrated that the investigated ILs support the suppression of both cathodic and anodic reactions, acting as mixed type inhibitors. Langmuir's adsorption isotherm was confirmed as the best fitted isotherm, describing the physical-chemical adsorption capability of used ILs on the C-steel surface with the change in the free energy of adsorption, ΔG°ads = 32.6-37.2 kJ mol-1. The efficacy of the synthesized ILs was improved by increasing the doses, and the temperature reached 86.6, 96.1, and 98.4%, respectively, at 318 K. Surface morphology was proved by Fourier Transform Infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM), and then, changes in test solutions were checked by Ultraviolet-visible spectroscopy. Theoretical modeling (density functional theory and Monte Carlo) revealed the correlation between the IL's molecular chemical structure and its anticorrosive property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.