Abstract

Nowadays, nanofibrous structures based on organic and inorganic materials are considered a drug delivery system for the controlled release of antibiotics and other antibacterial agents. The main goal of this research is a combination of the special properties of nanofibrous structure and Mupirocin-loaded Layered double hydroxide (LDH) to obtain a dual-carrier drug release system to provide long term antibacterial properties in wound healing process. Regards, unloaded layered double hydroxide (LDH) and Mupirocin-loaded LDH, which were synthesized by co-precipitation method, were added to Polyvinyl alcohol (PVA) solution in different mass ratio and electrospun using different processing conditions. The physico-chemical characterizations were performed using SEM, FTIR and tensile strength tests. The biological properties of the fabricated nanocomposites were evaluated using antibacterial test and in vitro cell culturing followed by MTT assay. The SEM results showed a bead-less and uniform morphology of nanofibrous composite containing Mupirocin(2.3 wt%)-LDH(15 wt%)/PVA with an average fiber diameter of about 270 ± 58 nm. According to the release study, the maximum release of the mupirocin drug was about 54 % in the first 6 h. The antibiogram analysis exhibited good antibacterial activity of mupirocin-loaded nanocomposite against both bacteria, especially gram-positive one. Finally, MTT assay approved the biocompatibility of the mupirocin-loaded nanocomposite. Overall, the produced nanofibrous composites would be a promising dual-carrier system for controlled release of antibiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.