Abstract

Alkenyl succinic anhydride (ASA) is one of the most prominent paper sizing agents worldwide. Commercial products start from isomerized C16-18 olefins with certain distribution of the double bond along the alkyl chain. This distribution is then found again in the product ASA which renders mechanistic studies on ASA binding to the cellulose surface difficult. For studies on ASA reactivity, olefins with defined double bond location (2-, 4-, 6-octadecene and 6-icosene) were synthesized according to Wittig protocols, and further reacted with 13C-labeled maleic anhydride to give ASA model compounds with defined double bond location and 13C-labeled carbonyl group. The olefinic products of the Wittig synthesis, rich in cis-isomers, afforded exclusively trans-configured compounds upon the enereaction with maleic anhydride. The reactions afforded four products, two regioisomeric compounds with different position of the double bond, each of which as threo- and erythro-isomer in different ratios. The products were comprehensively analytically characterized including a full NMR resonance assignment in the 1H and 13C domain. The model compounds are now used in combination with gel and solid-state NMR for studies on ASA reactivity towards cellulosic surfaces with a focus on the questions whether - and to what extent - covalent binding of ASA to cellulose can occur under conditions relevant to paper production and paper sizing. Keywords: Alkenyl succinic anhydride (ASA), attenuated total reflection infrared (ATR-IR) spectroscopy, ene reaction, isotopic labeling, nuclear magnetic resonance (NMR) spectroscopy, paper sizing, Wittig reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.