Abstract

AbstractHyperbranched aromatic and aliphatic poly(urea‐urethane)s were prepared by the one‐pot method using 2,4‐toluylene diisocyanate (TDI), isophorone diisocyanate, and 2(3‐isocyanatopropyl)cyclohexyl isocyanate as AA* monomers and diethanol amine and diisopropanol amine as B2B* monomers. The characteristics of the resulting polymers were very sensitive to slight changes in the reaction conditions, such as temperature, concentration, and type of catalyst used, as can be seen from the results of gel permeation chromatography and differential scanning calorimetry. The structures were analyzed in detail using 1H and 13C NMR spectroscopy. By using model compounds, the different isomeric structures of the TDI polymers were deduced, their percentages of their linear, terminal, and dendritic subunits were calculated, and their degree of branching (DB) was determined. DB values up to 70% were reached depending on the reaction conditions and stoichiometry of the monomers. The number of terminal groups decreased significantly when dibutylamine was used to stop the reaction instead of B2B*, indicating the presence of a significant number of unreacted isocyanate groups in the hyperbranched product when the polyaddition reaction was stopped. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3062–3081, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.