Abstract

A series of Cu-X/?-Al2O3 (X = Fe, Co, Ni) catalysts were synthesized by a rapid intermittent microwave irradiation method for hydrogen generation from dimethyl ether steam reforming. Different parameters, such as the promoters of X (X = Fe, Co, Ni), microwave irradiation procedure and the ratio of metal to ?-Al2O3, were investigated. The results show that 2Cu-Fe/72?-Al2O3 has the best performance, for which the agglomeration is prevented, CuO is well dispersed and the catalytic activity is improved. Promoter iron oxide in 2Cu-Fe/9?-Al2O3 facilitates the watergas shift reaction, which lead to an increase in the conversion of CO to CO2 and hydrogen yield. Particularly, the 2Cu-Fe/72?-Al2O3 catalyst, with the best molar ratio of metal to ?-Al2O3, shows a dimethyl ether conversion of >99% and a hydrogen yield of >98% and produces the lowest CO content of 1.4%, indicating that the synergism between dimethyl ether hydrolysis and methanol reforming requires an appropriate balance between the metallic Cu-Fe and the acid ?-Al2O3. The intermittent microwave irradiation technique provides a simple but effective method of the Cu-Fe/?-Al2O3 synthesis with a good catalyst performance for the dimethyl ether steam reforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.