Abstract

Catalytic degradation of Acid Orange 7 (AO7) by hydrogen peroxide in an aqueous solution has been investigated using cobalt(II) complex of 5, 10, 15, 20 Tetrakis [4-(hydroxy)phenyl] porphyrin [Co(II) TPHPP] covalently supported chitosan/Graphene Oxide nanocomposite [Co(II) TPHPP]-Cs/GO, as highly efficient and recoverable heterogeneous catalyst. The structures and properties of [Co(II) TPHPP]-Cs/GO nanocomposite were characterized by techniques such as UV–Vis, FT-IR, SEM, EDX, TEM, and XRD. The oxidation reaction was followed by recording the UV–Vis spectra of the reaction mixture with time at λmax = 485 nm. [Co(II) TPHPP]-Cs/GO nanocomposite demonstrated high catalytic activity and could decompose 94% of AO7 within 60 min. The factors that may influence the oxidation of Acid Orange 7, such as the effect of reaction temperature, pH, concentration of catalyst, Acid Orange 7, and hydrogen peroxide, have been studied. The results of total organic carbon analysis (TOC) showed 50% of dye mineralization under mild reaction conditions of AO7 (1.42 × 10−4M) with H2O2 (8 × 10−2M) in the presence of [Co(II) TPHPP]-Cs/GO nanocomposite (15 × 10−3 g/ml) and pH = 9 at 40 °C. The reuse and stability of the nanocomposite were examined and remarkably, even after six cycles of reuse, there was no significant degradation or deactivation of the recycled catalyst. Residual organic compounds in the reaction mixture were identified by using GC–MS analyses. The radical scavenging measurements and photoluminescence probing technology of disodium salt of terephthalic acid indicated the formation of the hydroxyl radical as the reactive oxygen species in the [Co(II) TPHPP]-Cs/GO nanocomposite/H2O2 system. A mechanism for the oxidation reaction has been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.