Abstract

Banana peels are considered one of the most abundant biowastes while Saba banana (Musa acuminata × balbisiana) is one of the most consumed fruit varieties in the Philippines. This research focused on the synthesis and characterization of carbon quantum dots (CQDs) from ripe and unripe Saba banana peels (SBP) via hydrothermal carbonization using low (100°C) and high (200°C) carbonization temperatures. Transmission electron microscopy revealed that ripe CQDs synthesized at these temperatures (rCQDs-100 and rCQDs-200, respectively) possessed disk-shaped and quasi-spherical structures with particle size range of 1.71-5.05 nm and 1.55-4.66 nm, respectively. However, unripe CQDs (uCQDs-100 and uCQDs-200, respectively) could not be considered as quantum dots due to their flake-like morphology and relatively large particle size (>40 nm and 2.21-21.24 nm, respectively). Likewise, Fourier-transform infrared spectroscopy identified the presence of enormous functional groups in all samples. Interestingly, C=N group was found only in uCQDs corresponding to the presence of chlorophyll in the samples. Moreover, all the CQDs emitted blue-green color under UV light illumination, with rCQDs-200 exhibited the best fluorescence emission. Thus, the approach of synthesizing CQDs using ripe SBP at higher temperature offers higher reacted precursors, better morphology, and greater fluorescence emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.