Abstract

We report a microfluidic-based droplet generation platform for synthesizing micron-sized porous carbon microspheres. The setup employs carbon materials such as graphite, carbon nanotubes, graphene, fullerenes, and carbon black as starting materials. Custom composition, structure, and function are achieved through combinations of carbon materials, cross-linkers, and additives along with variations in process parameters. Carbon materials can be assembled into spheres with a mean diameter of units to hundreds of μm with relatively tight size distribution (<25% RSD). Pore structure and size (tens to hundreds of angstrom) can be modulated by incorporating porogen/coporogen dilutants during synthesis. The microbeads have excellent mechanical stability with an elastic modulus of hundreds of MPa. They can sustain high dynamic fluid flow pressures of up to 9000 psi. This work lays the foundation for synthesizing novel tailorable and customizable carbon microbeads. It opens avenues for applying these novel materials for composite and additive manufacturing, energy, life science, and biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.