Abstract

ABSTRACTA Fe(III) ion‐imprinted silica gel polymer functionalized with phosphonic acid groups (IIP‐PA/SiO2) was prepared with surface imprinting technique by using Fe(III) ion as template ion, grafted silica gel as support, and vinylphosphonic acid as functional monomer. The polymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, and thermogravimetric analysis. The synthesized imprinted silica gel polymer was used as a sorbent for Fe(III) adsorption. The adsorption properties, such as the effect of solution pH, adsorption kinetic, adsorption isotherm, adsorption selectivity as well as the regeneration of sorbent were studied. The results showd that the prepared sorbent (IIP‐PA/SiO2) had a short adsorption equilibrium time (12 min) and high adsorption capacity (29.92 mg g−1) for Fe(III) at the optimal pH of 2.0. The selectivity coefficients of the sorbent for Fe(III) in presence of Cr(III), Mn(II), and Zn(II) were 51.76, 27.86, and 207. 76, respectively. Moreover, the adsorption capacity of the prepared sorbent did not decrease significantly after six repeated use. Thus, the prepared ion‐imprinted silica gel polymer was a promising candidate sorbent for the selective adsorption of Fe(III) from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45165.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.