Abstract

In this work, the isonicotinamide was coordinated to the Cobalt ion in oxidation state +2. The relevance of this work is the investigation of the in vitro bactericidal potential of the synthesized complex when tested in Gram-positive and negative bacteria strains. This study is motivated by the need to obtain new materials that have antibiotic properties and that, in the future, may become an effective drug against resistant bacteria. A new coordination compound of Cobalt and isonicotinamide, [Co(H2O)(isn)3](BF4)2, was synthesized and described. The compound was characterized by thermoanalytical techniques TG-DTG and TG-DSC, where it was possible to propose the mechanism of thermal decomposition. Through the spectroscopy in the region of the medium infrared (FTIR), it is possible to infer the site of connection between isonicotinamide and metal. The bactericidal activity of [Co(H2O)(isn)3](BF4)2, CoCl2 and free Isonicotinamide were tested for the bacteria Streptococcus mutans (Gram+) and Escherichia coli (Gram−) and the synthesized compound showed to be sensitive for both bacteria.

Highlights

  • Bacteria have been present on Earth for billions of years, and to survive the environment, they have developed adaptive mechanisms that have allowed them to resist natural medicines for all that time [1]

  • The bactericidal activity of [Co(H2O)(isn)3](BF4)2, CoCl2 and free Isonicotinamide were tested for the bacteria Streptococcus mutans (Gram+) and Escherichia coli (Gram−) and the synthesized compound showed to be sensitive for both bacteria

  • This study aimed to develop and characterize a new complex formed by the coordination of cobalt (II) isonicotinamide, and to perform a qualitative study of the potential bactericidal activity of the synthesized complex, tested in vitro on Streptococcus mutans (S. mutans) Gram (+) and Escherichia coli (E. coli) Gram (−)

Read more

Summary

Introduction

Bacteria have been present on Earth for billions of years, and to survive the environment, they have developed adaptive mechanisms that have allowed them to resist natural medicines for all that time [1]. The ease in acquiring this type of substance, either naturally or through the pharmaceutical industry has caused the bacteria to develop mechanisms of resistance to these drugs [4] The seriousness of this problem is worldwide and in May 2015 the World Health Organization approved a set of measures called the Global Plan of Action on Microbial Resistance [4], which sets out five general objectives: 1) Improve awareness and understanding of antimicrobial resistance through communication, education and effective training; 2) Strengthen the knowledge base and evidence through surveillance and research; 3) Reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures; 4) Optimize the use of antimicrobial drugs in human and animal health; 5) Develop the economic argument for sustainable investment that considers the needs of all countries, and increases investment in new medicines, diagnostic tools, vaccines and other interventions [4]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.