Abstract

The aim of the current study was to enhance the mechanical property of chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogels. A novel nanocomposite injectable hydrogel was prepared by introducing attapulgite (ATP) nano particles into the CS/GP hydrogels. The mechanical properties of the composite hydrogels with two different water contents were characterized by tensile test, the results shown that the tensile strength and elongation at break of composite hydrogels both increased obviously with increasing of ATP content. And, in our testing range, the maximum values of tensile strength and elongation at break were both more than 5 times larger than that of neat CS/GP hydrogel. We discussed this enhancement effect in detail by Scanning electron microscope observations (SEM) and Fourier transform infrared spectroscopy testing (FT-IR). The SEM images of composite hydrogels shown quite different from the neat CS/GP hydrogel, where the pores were more tightly and with some uniform and smaller holes dispersed on the wall. FT-IR test results revealed that the introduction of ATP increased the cross-link density because of the hydrogen bonds formation between ATP nanoparticles and CS molecules. Also, we studied the impact of ATP introduction on gelation speed through tracking the dynamic process of the sol–gel transition by means of rheological measurement, and the results shown that the reaction rate increased significantly with the increase of ATP concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.