Abstract

New 9,10-substituted anthracene derivatives were designed and synthesized for application as blue-emitting and hole-transporting materials in electroluminescent devices. They were characterized by H NMR, C NMR, FTIR, UV–vis, PL spectroscopy, and mass spectrometry. The theoretical calculation of three-dimensional structure and the energy densities of HOMO and LUMO states, as well as optical properties of these new obtained materials, supported the claim that they had non-coplanar structures. Their optical, thermal, and electrochemical properties could be tuned by varying the peripheral substituents. All of them were electrochemically and thermally stable molecules. Materials having electron donating triphenylamine as peripheral substituents showed promising potential as both blue light-emitting materials and hole-transporting materials for electroluminescent devices. Efficient blue and Alq3-based green OLEDs with maximum luminance efficiencies and CIE coordinates of 1.65cd/A and (0.15, 0.16) and 6.25cd/A and (0.26, 0.49) were achieved, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.