Abstract

Dimethyl 5-sulfoisophthalate sodium salt (DMSIP)-co-diethylene glycol (DEG)-co-maleic anhydride (MA)/phthalic anhydride (PA) oligomers were synthesized via condensation reaction and the corresponding membranes were prepared by UV curing. The number-average molecular weight (Mn) of the DMSIP-co-DEG-co-MA/PA (DDMP) was proportional to the concentration of DMSIP and ranged from 1,360–2,856 g/mol. A successful introduction of a -SO3Na group to the main oligomer chain was confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy and the thermal stability of the membranes up to 300 °C was analyzed using thermogravimetric analysis (TGA). The water uptake values, swelling ratios, and the ion-exchange capacities of the membranes were 13%–30%, 7%–15%, and 0.7–0.9 meq/g, respectively. The electrical properties of the membrane, including the area resistance, ion transport number, and the cyclic charge-discharge current were also analyzed; these properties confirmed that these membranes were suitable for use in redox flow battery (RFB) applications. Open image in new window

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.