Abstract

Pure cubic phase yttrium oxide or yttria (Y2O3) nanoparticles were successfully synthesised via the co-precipitation method in a distillate pack, followed by calcination of the precursor, yttrium oxalate (Y2(C2O4)3) in a furnace. The co-precipitation reaction temperature was varied between room temperature and 100 °C for various reaction durations ranging between 0.5 and 3 h. The as-synthesised precursor was characterised using a thermogravimetric analyser (TGA) and Fourier transform infrared spectrometer (FTIR). The Y2O3 nanoparticles obtained from the calcination of the precursor at various calcination conditions (temperature ranged from 500 to 800 °C for 2–8 h) were characterised using a field emission scanning electron microscope (FESEM), a transmission electron microscope (TEM), X-ray diffraction (XRD), FTIR, a Raman spectrometer, and Brunauer–Emmett–Teller analyser (BET). It was concluded from these characterisations that the optimum processing parameters for pure Y2O3 nanoparticles are co-precipitation reaction at 40 °C for 1 h, followed by calcination at 650 °C for 4 h. This method yielded semispherical Y2O3 nanoparticles with crystallite size ranging between 7 and 21 nm and a large specific surface area of 7.40 m2/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.