Abstract

The alkyl-functionalised scandium complex [(pdl*SiMe2NtBu)Sc(thf)(CH2SiMe3)] (2) was synthesised in enantiomerically pure form and characterised by NMR spectroscopy and X-ray diffraction analysis. Complex 2 features a chiral constrained geometry ligand derived from the natural compound (1R)-(-)-myrtenal, in which the pentadienyl (pdl*) fragment coordinates in η3:η2-allyl-en fashion to the scandium atom. Compound 2 catalyses the polymerisation of rac-lactide at 30 °C and 50 °C yielding amorphous poly(lactide) with slightly heterotactic enchainment (Pm = 0.36 and 0.37). In agreement with the data obtained from GPC and DSC measurements, a chain-end control mechanism is proposed with fast chain propagation relative to the initiation, which leads to broad molecular weight distributions (Đ ≈ 1.80) and higher than expected molecular weights. Furthermore, chain transfer processes are observed, but only small amounts of transesterification and racemisation occur. Kinetic studies reveal a second-order dependence in rac-lactide (monomer) concentration and a first-order dependence in the concentration of catalyst 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.