Abstract

The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo 3 oxidase (cyt bo 3) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd‐type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd‐type) use ubiquinol‐8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3‐alkylated Lawson derivatives through L‐proline‐catalyzed three‐component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo 3 and cyt bd‐I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo 3 by more than 50 % without affecting the cyt bd‐I activity. Moreover, two inhibitors for both cyt bo 3 and cyt bd‐I oxidase could be identified. Based on molecular‐docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo 3, whereas heterocycles reduce this effect. This work extends the library of 3‐alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory‐chain enzymes of E. coli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.