Abstract

Evidence suggested that the use of partial dopamine D2/D3 receptor agonists may be a better choice for the treatment of Parkinson's disease (PD), and the stimulation of 5-HT1A receptors (mainly via nondopaminergic mechanisms) alleviates motor and nonmotor disorders of PD, implying that the multitarget approach may provide a double bonus for the treatment of the disease. In this study, 20 novel 1-(3-((6-fluoropyridin-3-yl)oxy)propyl)piperazine derivatives were designed and synthesized using a bioisosterism approach, and their activities for D2/D3/5-HT1A receptors were further tested. The results showed that several compounds exhibited a multitarget combination of D2/5-HT1A agonism. Compounds 7b and 34c showed agonistic activities on D2/D3/5-HT1A receptor. The EC50 value of 7b for D2/D3/5-HT1A receptor were 0.9/19/2.3 nmol/L, respectively; and the EC50 value of 34c for D2/D3/5-HT1A receptor were 3.3/10/1.4 nmol/L, respectively. In addition, 34c exhibited good metabolic stability (the half-life T 1/2 = 159.7 minutes) in vitro, which is of great significance for the further exploration of multitarget anti-PD drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.