Abstract

Cobalt oxide (Co3O4) nanoparticles supported on olive stone biochar (OSBC) was used as an efficient sorbent for rifampicin (RIFM) and tigecycline (TIGC) from wastewater. Thermal stabilities, morphologies, textures, and surface functionalities of two adsorbents; OSBC and Co-OSBC were compared. BET analysis indicated that Co-OSBC possesses a larger surface area (39.85 m2/g) and higher pore-volume compared to the pristine OSBC. FT-IR analysis showed the presence of critical functional groups on the surface of both adsorbents. SEM and EDX analyses showed the presence of both meso- and macropores and confirmed the presence of Co3O4 nanoparticles on the adsorbent surface. Batch adsorption studies were controlled using a two-level full-factorial design (2k-FFD). Adsorption efficiency of Co-OSBC was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dose (AD), drug concentration, and contact time (CT). A %R of 95.18% and 75.48% could be achieved for RIFM and TIGC, respectively. Equilibrium studies revealed that Langmuir model perfectly fit the adsorption of RIFM compared to Freundlich model for TIGC. Maximum adsorption capacity (qmax) for RIFM and TIGC was 61.10 and 25.94 mg/g, respectively. Adsorption kinetics of both drugs could be best represented using the pseudo-second order (PSO) model.

Highlights

  • Active chemicals (PhACs), an important group of emergent contaminants, have attracted a lot of attention since they were discovered in surface and wastewater treatment plants in the late 1990s

  • FT-IR was used to identify the functional groups on the surface of the as-prepared sorbents; Co-olive stone biochar (OSBC) and OSBC

  • Based on the data presented in this work, an efficient and cost-effective nanosorbent could be obtained by loading Co3 O4 nanoparticles onto the olive stones biochar (Co-OSBC)

Read more

Summary

Introduction

Active chemicals (PhACs), an important group of emergent contaminants, have attracted a lot of attention since they were discovered in surface and wastewater treatment plants in the late 1990s. 3000 different types of PhACs are routinely employed in the different therapeutic rehearsals, and more than 80 species have been detected in diverse environmental matrices across the world. It is expected that worldwide consumption of PhACs sums to some 100,000 tons or more per year. The existence and fate of PhACs has become a major concern and a focus of research for the. 21st century [1,2,3,4]. Antibiotics represent a major class of antimicrobial agents that are commonly used for therapeutic purposes. Literature surveying shows the wide consumption of antibiotics.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.