Abstract

In this study, three functionalized chiral ionic liquids (CILs) derived from l-valinol, l-prolinol and l-phenylalaninol, namely N,N,N-trimethyl-l-valinol-bis(trifluoromethanesulfon)imide ([TMLV]+[Tf2N]−, CIL1), N,N-dimethyl-l-prolinol-bis(trifluoromethanesulfon)imide ([DMLP]+[Tf2N]−, CIL2) and N,N,N-trimethyl-l-phenylalaninol-bis(trifluoromethanesulfon)imide ([TMLP]+[Tf2N]−, CIL3), were synthesized and subsequently utilized for enantiomeric separation in capillary electrophoresis (CE) with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector for the first time. Compared with traditional single HP-β-CD separation system, the synergistic system exhibited substantially improved separations of six tested drugs. Using the CIL1/HP-β-CD as a model system, the influence of crucial parameters including the type and proportion of organic modifier, CILs concentration, HP-β-CD concentration and buffer pH was investigated in detail. Additionally, molecular modeling with AutoDock was applied to elucidate the enhanced enantioselectivity in the presence of CILs, which has certain guiding value in predicting the migration order of the enantiomers and studying the interactions important for the chiral recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.