Abstract

ABSTRACTA series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next “green” catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, 1H and 13C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi—Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata—and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L−1). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L−1 in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L−1 and 20 mg L−1. In the concentration of 100 mg L−1, the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L−1, compound 6 showed good activity only against P. cactorum strain (72%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.