Abstract

Bacterial resistance development has become a very serious clinical problem for many classes of antibiotics. The 3-aryl-2-oxazolidinones are a relatively new class of synthetic antibacterial agents, having a new mechanism of action which involves very early inhibition of bacterial protein synthesis. We have prepared two potent, synthetic oxazolidinones, U-100592 and U-100766, which are currently in clinical development for the treatment of serious multidrug-resistant Gram-positive bacterial infections caused by strains of staphylococci, streptococci, and enterococci. The in vitro and in vivo (po and iv) activities of U-100592 and U-100766 against representative strains are similar to those of vancomycin. U-100592 and U-100766 demonstrate potent in vitro activity against Mycobacterium tuberculosis. A novel and practical asymmetric synthesis of (5S)-(acetamidomethyl)-2-oxazolidinones has been developed and is employed for the synthesis of U-100592 and U-100766. This involves the reaction of N-lithioarylcarbamates with (R)-glycidyl butyrate, resulting in excellent yields and high enantiomeric purity of the intermediate (R)-5-(hydroxymethyl)-2-oxazolidinones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.