Abstract
The HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) constitute a large and structurally diverse set of compounds, several of which are currently used in the treatment of AIDS. A series of novel alkenyldiarylmethanes (ADAMs) were designed and synthesized as part of an ongoing investigation to replace the metabolically labile methyl ester moieties found in the ADAM pharmacophore with stable modifications that retain the potent anti-HIV activity of the parent compounds. Unsurprisingly, the rat plasma half-lives of the new ADAMs were not improved when compared to the parent compounds, but all of the synthesized ADAMs inhibited the cytopathic effect of HIV-1 in cell culture. The most potent compound identified was ( E)-5-[1-(3,7-dimethyl-2-oxo-2,3-dihydro-benzoxazol-5-yl)-5-methoxycarbonyl-pent-1-enyl]-2-methoxy-3-methylbenzoic acid methyl ester ( 7), which inhibited the cytopathic effects of both HIV-1 RF and HIV-1 IIIB strains in cell cultures with EC 50 values of 30 and 90 nM, respectively, and inhibited HIV-1 reverse transcriptase with an IC 50 of 20 nM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.