Abstract

Using the porous framework of CaO as templates and reagents, we explored a surfactant-free and economical method for preparing calcium silicate hydrate (CSH) hierarchically ordered nanostructures. Incorporation of SiO2 nanoparticles into the CaO framework, followed by a reaction assisted by hydrothermal treatment, resulted in the formation of CSH with well-defined morphologies. The structural features of CSH were characterized by 3-D hierarchical networks, wherein nanofibers assembled to form nanosheets, and nanosheets assembled to form hierarchically ordered structures. Investigation of the crystal growth mechanism indicated that the key to forming the CSH ordered assembly structure was confining the Ca/Si ratio within a small range. Nonclassic oriented aggregation mechanism was used to describe the crystal growth of nanosheets, while the porous CaO framework served as template/reagents responsible for the formation of hierarchical structures. The resulting CSH adsorbent exhibited better performance in removing Pb(II) compared with other types of random CSH adsorbents. Additionally, the hierarchical structure of CSH provided more pores and active sites as support for other active functional materials such as zerovalent iron (Fe0). As-produced CSH@Fe nanocomposite with self-supported structures displayed high capacities for removal of Pb(II) after five adsorption-desorption cycles, and high capacities for other heavy metal ions (Cu2+, Cd2+, and Cr2O72-) and organic contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.