Abstract
Obtained new strongly acid cation exchanger of macroporous structure based on furfural and dipheniloxide. The optimal amount of the poreformed agent and the molar ratio of the reacting substances were determined. Initially results showed that the polymer matrix using camphor as pore forming agent present a uniform surface with inter-connected pores and adding camphor into the polymer matrix could attain more abundant pores than adding n-heptane. We studied the components, surface and pore structures of the сation exchanger by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). SEM observations showed that the resin abounded in macropores as large as 7.4 to 22.6 µm both in the surface and the interior. The parameters of the porous structure of the samples are calculated using by equation BET (Brauner., at al.) and the total pore volume of ion exchangers and the radius of submicroscopic capillaries were determined. Finally dates testing prototypes under application conditions, allow us to recommend this cation exchanger for sorption of small radius ions at high speed, as fundamentals upon receipt of ion exchangers, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.