Abstract

Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here weidentified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accumulation. Among several SNAP receptor (SNARE) genes, Drosophila syntaxin 13 (syx13) exhibited a strong genetic interaction with mutant CHMP2B. Knockdown of syntaxin 13 (STX13) or its binding partner Vti1a in mammalian cells caused LC3-positive puncta to accumulate and blocks autophagic flux. STX13 was present on LC3-positive phagophores induced by rapamycin and was highly enriched on multilamellar structures induced by dysfunctional ESCRT-III. Loss of STX13 also caused the accumulation of Atg5-positive puncta and the formation of multilamellar structures. These results suggest that STX13 is a genetic modifier of ESCRT-III dysfunction and participates in the maturation of phagophores into closed autophagosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.