Abstract

Easily accessible biomarkers that may inform on the metastatic potential of localized prostate cancer are urgently needed. Herein, we show that syntaphilin (SNPH), a molecule originally identified as a negative regulator of mitochondrial dynamics in neurons, is abundantly expressed in prostate cancer. SNPH distribution in prostate cancer is spatially biphasic, with high expression at the invasive front, correlating with increased proliferative rates, as determined by Ki-67 labeling, and reduced levels in the central tumor bulk, which are further decreased in patients with distant metastases. Higher levels of SNPH are observed with increasing Gleason grade. Prostate tumors predominantly express a novel, extraneuronal isoform of SNPH that accumulates in mitochondria and maintains oxidative metabolism and tumor cell proliferation. These data suggest that SNPH is a novel marker of high Gleason grade prostate cancer, differentially expressed at the invasive front compared with the central tumor bulk, and is potentially down-regulated in metastatic disease. This biphasic pattern of expression may reflect a dual function of SNPH in controlling the balance between cell proliferation and invasion in tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.