Abstract
The synoptic and dynamic aspects of heavy rainfall occurred on 5th May 2017 and caused flash flooding in arid and semi-arid central-northern Iran is analyzed by the Weather Research and Forecasting (WRF) model. This system synoptically is attributed to a surface low-pressure centered over southern Iran extended to the central parts, linking to a mid-tropospheric tilted-trough over western Iran, and advecting significant moisture from the Mediterranean Sea and the Red Sea to the studied area. The dynamical analysis revealed that the penetration of the upper-tropospheric potential vorticity streamer up to 300 hPa level was not related to such heavy rainfall. Contrarily, the low-level factors such as extensive moisture advection, mid-tropospheric diabatic processes such as the latent heat release, daytime deep convection, and topographical impact of Zagros Mountains were found as the key factors leading to this system. This study also examines 11 different convection schemes simulated by the WRF model and verified against rainfall observation. The forecast skills of the output simulations suggest the Grell-Devenyi scheme as the superior configuration in simulating observed precipitation of the event over the area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.