Abstract

Crystalline carbon nitride is regarded as the new generation of emerging metal-free photocatalysts as opposed to polymeric carbon nitride (g-C3N4) because of its high crystalline structure and ultrahigh photocatalytic water splitting performance. However, further advances in crystalline g-C3N4 are significantly restricted by the sluggish separation of charge carriers and limited active sites. In this study, we demonstrate the successful synthesis of heptazine-triazine donor–acceptor-based ultrathin crystalline g-C3N4 nanosheets (UCCN) using a combined hot air exfoliation and molten salt (NaCl/KCl) copolymerization approach. The synergy of the donor–acceptor heterojunction and the ultrathin structure greatly accelerated the separation of the charge carriers and enriched the active sites. Accordingly, the superior hydrogen evolution activity and an ultrahigh apparent quantum efficiency of 73.6% at 420 nm under a natural photosynthetic environment were achieved by UCCN, positioning this material at the top among reported conjugated g-C3N4 materials. This study provides a novel paradigm for the development of donor–acceptor-based ultrathin crystalline layered materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.