Abstract
Transition metal oxides have been extensively investigated as novel catalysts for oxygen evolution reaction (OER). Partial elemental substitutions are effective ways to increase catalytic performance and such electronic interactions between multiple elements are known as synergistic effects. However, serious issues such as random atomic arrangement and ambiguous roles of constituent elements humper theoretical investigations for rational materials design. Herein, we describe systematic study on OER activity of AA′3B4O12-type quadruple perovskite oxides, in which multiple transition metal ions are located at distinct crystallographic sites. Electrochemical measurements demonstrate that OER catalytic activities of quadruple perovskite oxide series, CaCu3B4O12 (B = Ti, V, Cr, Mn, Fe, and Co), are all superior to those of simple perovskite counterparts CaBO3. The order of activity of B-site transition metal ions for CaBO3 (Fe4+ > Co4+ ≫ Ti4+, V4+, Cr4+, Mn4+) is retained in CaCu3B4O12, indicating that B-site ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.