Abstract
Long-term debris environment projections are of great importance for assessing the necessity and effectiveness of debris mitigation measures. Two types of models have been developed to predict these environments. Environment evolution models like the EVOLVE code are using detailed mission model data to input spacecraft, upper stages, and operational debris into specific orbits at specific times; debris from fragmentations are placed in orbits defined by the state vector of the fragmenting object(s) and the breakup model. The second type, typified by the CHAIN program, uses a particle-in-box model that bins the environment in size and altitude rather than following the orbit evolution of individual debris fragments. A 3-Step approach using both the EVOLVE and CHAIN model in a synergistic way was used to increase the reliability of long term environment projections. EVOLVE historical projections 1957–1995 could be validated by comparison to measurements. The comparison of 100 year projection runs of EVOLVE and CHAIN for different traffic scenarios showed a good agreement. In this paper, for the first time, CHAIN projections up to 10,000 years, based on validated boundary conditions derived by EVOLVE are presented, indicating clearly the need of early implementation of effective mitigation measures to prevent exponential population growth by collisional cascading effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.