Abstract

The functions of different G-protein αβγ subunit combinations are traditionally ascribed to their various α components. However, the discovery of similarly diverse γ subtypes raises the possibility that they may also contribute to specificity. To test this possibility, we used a gene targeting approach to determine whether the closely related γ(3) and γ(7) subunits can perform functionally interchangeable roles in mice. In contrast to single knock-out mice that show normal survival, Gng3(-/-)Gng7(-/-) double knock-out mice display a progressive seizure disorder that dramatically reduces their median life span to only 75 days. Biochemical analyses reveal that the severe phenotype is not due to redundant roles for the two γ subunits in the same signaling pathway but rather is attributed to their unique actions in different signaling pathways. The results suggest that the γ(3) subunit is a component of a G(i/o) protein that is required for γ-aminobutyric acid, type B, receptor-regulated neuronal excitability, whereas the γ(7) subunit is a component of a G(olf) protein that is responsible for A(2A) adenosine or D(1) dopamine receptor-induced neuro-protective response. The development of this mouse model offers a novel experimental framework for exploring how signaling pathways integrate to produce normal brain function and how their combined dysfunction leads to spontaneous seizures and premature death. The results underscore the critical role of the γ subunit in this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.